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The endocannabinoid system is widespread throughout the central nervous system and
its type 1 receptor (CB1) plays a crucial role in preventing the neurotoxicity caused by
activation of glutamate N -methyl-D-aspartate receptors (NMDARs). Indeed, it is the activity
of NMDARs themselves that provides the demands on the endogenous cannabinoids
in order to control their calcium currents. Therefore, a physiological role of this system
is to maintain NMDAR activity within safe limits, thereby protecting neural cells from
excitotoxicity. Thus, cannabinoids may be able to control NMDAR overactivation-related
neural dysfunctions; however, the major obstacles to the therapeutic utilization of these
compounds are their psychotropic effects and negative influence on cognitive performance.
Studies in humans have indicated that abuse of smoked cannabis can promote psychosis
and even circumstantially precipitate symptoms of schizophrenia, although the latter
appears to require a prior vulnerability in the individual. It is possible that cannabinoids
provoke psychosis/schizophrenia reflecting a mechanism common to neuroprotection:
the reduction of NMDAR activity. Cannabinoids are proposed to produce such effect by
reducing the pre-synaptic release of glutamate or interfering with post-synaptic NMDAR-
regulated signaling pathways. The efficacy of such control requires the endocannabinoid
system to apply its negative influence in a manner that is proportional to the strength of
NMDAR signaling.Thus, cannabinoids acting at the wrong time or exerting an inappropriate
influence on their receptors may cause NMDAR hypofunction. The purpose of the present
review is to draw the attention of the reader to the newly described functional and physical
CB1–NMDAR association, which may elucidate the scenario required for the rapid and
efficacious control of NMDAR activity. Whether alterations in these mechanisms may
increase NMDAR hypofunction leading to vulnerability to schizophrenia will be outlined.
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INTRODUCTION
Schizophrenia is a debilitating psychiatric illness that affects
approximately 1% of the world’s population. The main symp-
toms associated with schizophrenia are grouped into three major
symptom clusters: positive symptoms, negative symptoms, and
cognitive disturbances (Lewis and Lieberman, 2000). Positive
symptoms include visual and auditory hallucinations, delusions,
and thought disorders. Negative symptoms include social with-
drawal and anhedonia. Cognitive impairments are characterized
by disturbances in sensory information processing, attention,
working memory, and executive functions. The neural dysfunc-
tions that underlie schizophrenia are likely the result of diverse
genetic alterations acting in conjunction with environmental
factors (Broome et al., 2005). The function of different neu-
rotransmitter systems is altered in psychosis, such as that of
dopamine, glutamate, gamma-aminobutyric acid (GABA), and
adenosine. The systematic analysis of protein and gene expres-
sion suggested a possible convergence of these alterations on
the glutamatergic system, particularly on the function of the

N-methyl-D-aspartate (NMDA)-type ionotropic receptor, which
mediates specific symptoms and features of schizophrenia (Mechri
et al., 2001; Kristiansen et al., 2007; Moghaddam and Javitt, 2012).

In the central nervous system (CNS), the NMDA receptor
(NMDAR) enables the permeation of calcium into the post-
synaptic cleft and regulates essential processes, such as synaptic
plasticity, learning, memory formation, and cognition. As a result,
any dysfunction of this receptor in associative areas of the cortex
can lead to alterations such as those observed in schizophre-
nia. NMDAR hypofunction is currently believed to provoke the
dopaminergic deregulation observed in the striatal and prefrontal
regions of schizophrenic patients (Harrison and Weinberger, 2005;
Javitt, 2007), and that both of these abnormalities are believed
to underlie the symptoms recognized as schizophrenia (Mohn
et al., 1999). The most compelling evidence that supports the
NMDAR hypofunction hypothesis comes from the effects of
the NMDA antagonist phencyclidine (PCP). PCP, also known
as “angel dust,” was found to induce psychotomimetic effects in
healthy individuals that are similar to the positive, negative, and
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cognitive symptoms of schizophrenia, and it caused a resurgence
of these symptoms in stable patients. PCP also targets acetyl-
choline and dopamine D2 receptors, however, its psychotomimetic
effects are produced at serum concentrations that are selective
for the NMDAR (revised in Javitt and Zukin, 1991). Therefore,
nervous tissue development anomalies or a series of genetic alter-
ations promoting NMDA receptor hypofunction may lead to the
development of schizophrenia symptoms. According to this idea,
enhancers of NMDAR currents have the potential to ameliorate the
symptoms of schizophrenia, while antagonist-mediated impair-
ment of NMDAR’s activity produces psychotic symptoms and
others schizophrenia-associated symptoms (Abi-Saab et al., 1998).

The endocannabinoid system controls the activity of NMDARs,
preventing their overactivation and providing neuroprotection
of neuronal cells against excitotoxicity. Cannabinoid-mediated
control of NMDAR function has been observed in functional
studies (Thorat and Bhargava, 1994; Derkinderen et al., 2003;
Marsicano et al., 2003; Liu et al., 2009), in hippocampal slice cul-
tures (Khaspekov et al., 2004), and in cultured neurons (Kim et al.,
2006). The excitotoxicity mediated by experimental activation
of NMDARs is enhanced in cortical cultured neurons follow-
ing targeted deletion of the cannabinoid receptor type 1 gene
(CNR1; Kim et al., 2006; Vicente-Sánchez et al., 2013). Since in
this paradigm alternative systems do not appear to exert signif-
icant control, CB1 emerges as a decisive negative physiological
regulator of NMDAR function in the earliest development of
cerebral cortical structures. Several studies have indicated that
cannabinoids oppose glutamatergic NMDAR function through
various mechanisms, such as the pre-synaptic reduction of glu-
tamate release into the cleft (Brown et al., 2003; Melis et al., 2004;
Li et al., 2010), or the inhibition of post-synaptic cannabinoid
receptors whose signaling pathways may interfere with those of
NMDARs (Liu et al., 2009; Hampson et al., 2011). Another possi-
bility is that cannabinoids prevent endogenous calcium increases
via mechanisms associated with the direct inhibition of the
NMDAR channel (Zhuang et al., 2005; Liu et al., 2009; Li et al.,
2010).

Thus, exogenous cannabinoids acting at the wrong time or
exerting an inappropriate influence on the endocannabinoid sys-
tem may cause a disproportionate downregulation of NMDAR
activity (hypofunction; Javitt and Zukin, 1991; Javitt, 2007). This
possibility is consistent with the reported relationship between
cannabis use and schizophrenia, particularly as it relates to the
amount of cannabis used in adolescence and the subsequent risk
of developing schizophrenia, or the appearance of schizophrenia-
like symptoms in non-schizophrenic people after cannabis use
(Fernandez-Espejo et al., 2009). Further, biological phenomena
related to endogenous cannabinoids, such as significantly higher
amounts of the endocannabinoid anandamide in the blood and
cerebrospinal fluid occur more frequently in patients with acute
schizophrenia than in healthy volunteers (Leweke et al., 1999;
De Marchi et al., 2003). While cannabis use in the general popula-
tion does not affect the incidence of schizophrenia it does reduce
the age of onset of psychotic illness among vulnerable individuals,
in whom the endogenous cannabinoid system would otherwise
promote the onset of this condition at a slower rate (Degenhardt
et al., 2003).

We now present an overview of the functional relationship
between CB1 and NMDARs, outlining the influence that their
recently described association in the brain may play in these mood
disorders. This novel information may provide more precise clues
to schizophrenia vulnerability when CB1-mediated regulation of
NMDAR function fails and produces glutamatergic hypofunction.

CANNABINOIDS AND SCHIZOPHRENIA
The pharmacological administration of endocannabinoids, as well
as synthetic and exocannabinoids, induces a full range of transient
positive, negative, and cognitive symptoms in healthy individuals
that are similar to those observed in schizophrenia (Fernandez-
Espejo et al., 2009). However, only a small subset of the population
of smoked cannabis abusers develops psychotic illness. Cannabis
exposure is actually believed to be a “component cause” that inter-
acts with other decisive factors to precipitate schizophrenia and
other psychotic disorders, but is neither necessary nor sufficient to
do so alone. Despite a series of data supporting the hypothesis that
certain genetic alterations contribute to cannabis-mediated pre-
cipitation of schizophrenia, conflicting evidence exists regarding
the hierarchy of these polymorphisms and how they relate to the
endocannabinoid or glutamatergic systems. Therefore, different
genetic and pathophysiologic mechanisms have been hypothe-
sized to underlie different forms of schizophrenia (Leroy et al.,
2001; Chavarria-Siles et al., 2008). As our knowledge increases,
these mechanisms may converge.

Endocannabinoids transmit their signals through two well-
characterized cell surface receptors, CB1 and CB2, which belong
to the superfamily of G-protein-coupled receptors (GPCR). Func-
tional evidence suggests the existence of other receptor subtypes,
although their identities have been elusive so far. CB1 is primar-
ily expressed in neural tissue and is also present in peripheral
tissues. This receptor is likely the most abundant of all known
GPCRs, with densities 10- to 50-fold above those of classical neu-
rotransmitters, such as dopamine or opioid receptors (Howlett
et al., 1990; Herkenham et al., 1991). CB2 is mostly expressed by
immune cells in peripheral tissues and is present to a lesser extent
in various regions of adult rat and mouse brains (Van Sickle et al.,
2005; Gong et al., 2006). Within cortical areas, both receptors
show notable differences in their neuronal distribution, which
may indicate that they have non-overlapping functional roles.
Therefore, both cannabinoid receptors are believed to regulate
important physiological activities in the CNS by working inde-
pendently and/or cooperatively in different neuronal populations
(Onaivi et al., 2006).

CB2 may be altered in schizophrenia, and clinical remission
of schizophrenia is accompanied by significant decreases in anan-
damide and CB2 mRNA levels in peripheral blood mononuclear
cells (De Marchi et al., 2003). However, it is not clear whether such
changes are also produced by cannabinoid treatment in healthy
individuals. Interestingly, targeted deletion of the CNR2 gene
causes schizophrenia-related behaviors in mice (Ortega-Alvaro
et al., 2011). This genetic finding is also supported by the results
of pharmacologic experiments that were conducted in a mouse
model of schizophrenia; the CB2 antagonist AM630 enhanced
MK801- and methamphetamine-induced disturbances of the pre-
pulse inhibition (PPI; Ishiguro et al., 2010). The authors concluded
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that reductions in CB2 function alone do not cause schizophre-
nia, but may be harmful for schizophrenia-susceptible individuals.
Similarly, CB2 agonists reduced stereotypic behaviors that are
related to schizophrenia-associated hyperdopaminergic function-
ing (Onaivi et al., 2006). These results are in agreement with the
observation that CB2 agonists provide neuroprotection against 6-
hydroxydopamine toxicity in vivo and in vitro (Garcia-Arencibia
et al., 2007). Evidence of the direct functional or molecular rela-
tionship between CB2s and NMDARs has not been provided in
the literature. The protective effects of CB2 activation against
glutamate-induced excitotoxicity are mediated through the activa-
tion of microglia and the release of endogenous IL-1ra (Molina-
Holgado et al., 2003). However, the CB1 subtype can establish
direct interactions with NMDARs (Sánchez-Blázquez et al., 2013b;
Vicente-Sánchez et al., 2013) and it mediates the majority of the
neuroprotective effects of cannabinoids (Marsicano et al., 2002;
Derkinderen et al., 2003; Liu et al., 2009). It is therefore probable
that CB2 hypofunction causes alterations in signaling pathways
directly and negatively coupled to NMDAR function, of which
CB1 is a candidate.

The CB1 regulates both pertussis toxin-sensitive Gi/o proteins
and pertussis toxin-insensitive Gz proteins (Garzón et al., 2009),
and its distribution in nervous tissue is consistent with the effects
of cannabinoids on emotional responses, cognition, memory,
movement, and nociception (Herkenham et al., 1991; Howlett,
1995; Walker and Huang, 2002). The activation of CB1 specifically
can produce long-lasting functional changes in the glutamater-
gic system, and prenatal exposure of rats to CB1 agonists causes
a series of alterations in cortical NMDAR signaling that affect
cognition (Antonelli et al., 2005). Moreover, repeated exposure to
�9-tetrahydrocannabinol (�9-THC) impairs hippocampal long-
term potentiation (LTP) of excitatory glutamatergic transmission
and diminishes the expression of NMDARs (Fan et al., 2010).

Given the essential role of NMDAR dysfunction in psy-
chotic illnesses, for the purposes of this review, we will focus
our attention upon the CB1. The constraints that CB1 activ-
ity imposes on NMDAR function may underlie both neuro-
protection and the negative effects of cannabinoids, and thus
smoked cannabis abuse may lead to psychosis and circum-
stantially precipitate or intensify symptoms of schizophrenia
(Degenhardt et al., 2003; Fernandez-Espejo et al., 2009), albeit
mostly in subjects bearing a previous vulnerability (Cannon and
Clarke, 2005;Harrison and Weinberger, 2005). Considering that
CB1 activity is recruited on-demand to control NMDAR signaling,
the efficacy of this regulation may rely on the proportionality of
both activities; and dysregulation of this process could certainly
lead to persistent glutamate NMDAR hypofunction. The relation-
ship between dopamine receptors and NMDARs is complex, and
while NMDAR calcium fluxes increase in response to activated
D1 and D2 receptors, the D4 receptor reduces NMDAR function
(Beaulieu and Gainetdinov, 2011). NMDARs can form regula-
tory complexes with dopamine D1 receptors and likely with D2
receptors (Fiorentini et al., 2003; Pei et al., 2004). The NMDARs
activated by D1/D2 receptors could be recruited to negatively
control dopamine signaling, similar to the effect they have on mu-
opioid receptors (MOR; Rodríguez-Muñoz et al., 2012; Sánchez-
Blázquez et al., 2013a). The glutamatergic pathway projecting from

cortical pyramidal neurons to the ventral tegmental area controls
dopaminergic neurons via the activity of GABA interneurons.
In this regulatory neural circuit NMDAR hypofunction causes
dopamine hyperfunction of the mesolimbic dopamine pathway
(Gaspar et al., 2009). If NMDARs and D1/D2 receptors estab-
lish such regulatory associations, then NMDAR hypofunction
would increase dopamine activity contributing to the symptoms of
schizophrenia.

A NEW PERSPECTIVE: THE ASSOCIATION OF CB1s WITH
NMDARs
A series of biochemical, molecular, and pharmacological stud-
ies have demonstrated the functional interaction between the
MOR and the CB1 (Desroches and Beaulieu, 2010), as well as
the interaction of these GPCRs with the glutamate NMDAR
(Rodríguez-Muñoz et al., 2012; Sánchez-Blázquez et al., 2013b).
NMDARs are primarily targeted to the post-synaptic region of
glutamatergic synapses, where they are organized (and spatially
restricted) into large macromolecular signaling complexes that
contain scaffolding and adaptor proteins. In these structures,
NMDARs physically link to kinases, phosphatases, GPCRs, and
other signaling molecules (Kim and Sheng, 2004; Sans et al.,
2005). Immunocytochemical and ultrastructural studies have
described the presence of CB1s in the post-synapse at both
the spinal (Hohmann et al., 1999; Ong and Mackie, 1999; Salio
et al., 2002) and supraspinal levels (Rodriguez et al., 2001; Kofalvi
et al., 2005), where they co-localize with NMDARs (Marchalant
et al., 2008). Co-immunoprecipitation assays performed on mouse
cerebral cortical synaptosomes have also demonstrated the associ-
ation between CB1 and NMDARs, concretely with NR1 subunits
(Garzón et al., 2009; Sánchez-Blázquez et al., 2013b). In these
assays, PSD95 proteins co-precipitated with CB1 confirming the
presence of this cannabinoid receptor at the post-synapse. The sec-
ond PDZ domain in PSD95 binds to the C-terminal amino acid
sequence that is common to NR2 subunits and NR1 C2′ splice
variants (Kornau et al., 1995) enabling CB1 to co-precipitate the
PSD95 via NR1 subunits (Sánchez-Blázquez et al., 2013b). Pull-
down and surface plasmon resonance studies that were performed
using recombinant proteins revealed the direct physical interac-
tion between the C-terminal region of CB1 and the C1 segment
of the NMDAR NR1 subunit. The direct interactions between
these proteins were also detected in a normal cellular environment
using the bimolecular fluorescence complementation (BiFC) assay
(Shyu et al., 2008). Chinese hamster ovary (CHO) cells were trans-
fected with a mixture (1:1) of plasmids expressing CB1 coupled
to VC155 and NR1 (C0-C1-C2) coupled to VN173 at the cor-
responding C-termini. The physical interaction of these carrier
proteins allows the VC155 and VN173 fragments to couple and
form a stable fluorescent complex, and numerous cells displayed
a fluorescent signal indicating that CB1 and NR1 interact to form
heterodimers in vivo (Sánchez-Blázquez et al., 2013b).

The dopamine D1 receptor (Fiorentini et al., 2003), the mGlu5a
metabotropic glutamate receptor (Perroy et al., 2008), and the
MOR (Rodríguez-Muñoz et al., 2012) are all examples of GPCR–
NMDAR operative complexes. Histidine triad nucleotide-binding
protein 1 (HINT1) associates with the C terminus of MOR and
CB1 (Guang et al., 2004; Sánchez-Blázquez et al., 2012), where it
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behaves as a scaffold protein that brings together a series of signal-
ing proteins (Rodríguez-Muñoz and Garzón, 2013). The HINT1
protein appears to be essential for the ability of these GPCRs to reg-
ulate NMDARs (Rodríguez-Muñoz et al., 2011; Sánchez-Blázquez
et al., 2013b; Vicente-Sánchez et al., 2013). Its role in sustaining
this regulatory connection will also be discussed. The potential
of the recently reported association between CB1s and NMDARs
to influence cannabinoid-induced psychosis was suggested by a
series of studies on NMDARs and CB1-induced analgesia. Pre-
treatment with NMDAR non-competitive antagonists, such as
MK801, greatly reduced the capacity of cannabinoids to produce
analgesia (Palazzo et al., 2001; Sánchez-Blázquez et al., 2013b).
These in vivo observations suggested that NMDAR activity was
required for cannabinoids to promote antinociception (Urca et al.,
1980; Jensen and Yaksh, 1989). However, while MK801 greatly
reduces the analgesia displayed by WIN 55,212-2 in wild-type
mice, it fails to do so in HINT1−/− mice (Sánchez-Blázquez et al.,
2013b). In these mice, CB1 is disconnected from the NMDAR and
cannabinoids do not protect cultured cortical HINT1−/− neurons
from NMDA-induced excitotoxic insults (Vicente-Sánchez et al.,
2013). Thus, cannabinoid-mediated analgesia does not require
NMDAR activity. Further, in vitro and ex vivo studies revealed
that the C-terminal sequences of the CB1 and of the NR1 sub-
unit of the NMDAR can establish direct physical interactions and
that the HINT1 protein stabilizes their association and makes it
functionally relevant (Figure 1; Sánchez-Blázquez et al., 2013b;
Vicente-Sánchez et al., 2013). In this framework, CB1 activation
promotes the co-internalization of NMDAR NR1 subunits with lit-
tle or no NR2 subunits. MK801 by binding simultaneously to NR1
and NR2 subunits in the NMDAR pore forming region strengthens
their interactions (Kashiwagi et al., 2002), and CB1 then cou-
ples to the whole NMDAR. Cannabinoid production of potent
supraspinal analgesia requires of CB1 internalization/recycling-
resensitization, yet the MK801-bound NMDAR prevents cannabi-
noids from efficiently internalizing CB1s, which rapidly desensitize
at the plasma membrane producing the described reductions in
the analgesic effects of cannabinoids. As expected, in HINT1−/−
mice, MK801 fails to impair cannabinoid-induced internaliza-
tion of CB1s. Thus, CB1–NMDAR complex does not con-
tribute to cannabinoid-mediated antinociception, although it is
required for endocannabinoids to negatively regulate the func-
tion of the ionotropic glutamate receptor (Sánchez-Blázquez et al.,
2013b).

FUNCTIONAL STUDIES: CANNABINOIDS RESTRICT NMDAR
FUNCTION AND PROTECT NEURAL CELLS FROM
EXCITOTOXIC INSULTS
Several studies have reported cannabinoid-mediated protection
of cell viability in different models of neurotoxicity, such as
that evoked by oxidative stress, the β-amyloid peptide, and focal
cerebral ischemia. However, this protection may not always be
mediated through pathways that are related to CB1 or CB2 acti-
vation (Marsicano et al., 2002; Harvey et al., 2012). In the present
review, we will focus on neuroprotection derived from the negative
control of NMDAR activity that natural, synthetic or endogenous
cannabinoids produce via their binding with CB1s (Khaspekov
et al., 2004; Liu et al., 2009; Sánchez-Blázquez et al., 2013b). The

FIGURE 1 |The role of HINT1 proteins in the direct interaction between

the C-terminal sequences of CB1 and the NMDAR NR1 subunits. Both
CB1 and the NR1 subunits interact with the HINT1 protein
(Sánchez-Blázquez et al., 2013b). This model describes the physical
interaction between the CB1 C-terminus and the NR1 C1 segment, as well
as both proteins with the HINT1 protein, which strengthens their
association.

activity of NMDARs is positively regulated by a series of GPCRs
via protein kinase C (PKC) and Src (Lu et al., 1999; Salter and
Kalia, 2004). NMDAR overactivation typically produces an excess
of calcium influx and subsequent calcium release from inter-
nal organelles. Such excessive activation augments the activity
of NMDAR-coupled neuronal nitric oxide synthase (NOS) and
NO then reacts with superoxides to form peroxynitrite, generating
reactive oxygen species (ROS) and releasing zinc from intracellu-
lar stores upon oxidative and nitrosative stimulation. The latter
metal ion contributes significantly to toxicity by damaging crit-
ical metabolic enzymes and contributing to the engagement of
apoptotic cascades (Frederickson et al., 2005; Knott and Bossy-
Wetzel, 2009). Zinc homeostasis seems particularly sensitive to
oxidative stress and its dysregulation appears to enhance neurotox-
icity, most likely because differences in zinc load activate distinct
harmful pathways (Aizenman et al., 2000; Frederickson et al., 2004;
Sensi and Jeng, 2004). The endocannabinoid system is probably
the endogenous regulator that most effectively restrains NMDAR
activity reducing calcium influx and the subsequent release of
calcium and zinc from endogenous stores (Sensi and Jeng, 2004;
Zhuang et al., 2005; Hampson et al., 2011; Sánchez-Blázquez et al.,
2013b).

CB1 activation mobilizes a large number of signal transduc-
tion pathways, and the neuroprotective antioxidant effects of
cannabinoids are also dependent upon the inhibition of Ca2+
influx through voltage-gated Ca2+ channels (Mackie and Hille,
1992) and the suppression of cyclic adenosine monophosphate
(cAMP)-mediated protein kinase A (PKA) signaling (Kim et al.,
2006). Cannabinoids primarily control the activity of exogenous
activators of NMDARs by acting on the calcium channel, rather
than stimulating calcium clearance by reuptake or its expulsion
into the extracellular space (Sensi and Jeng, 2004; Zhuang et al.,
2005). The post-synaptic CB1–NMDAR association may facilitate
such endogenous control, although this mechanism appears to
fail or is overridden by the activation of NMDARs under certain
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neuropathic circumstances, as well as in certain neurodegenerative
illnesses.

CB1–NMDAR ASSOCIATION AND GLUTAMATE
HYPOFUNCTION
In addition to other interactions that may occur between the
endocannabinoid and glutamate systems, the CB1–NMDAR asso-
ciation establishes a new scenario in which the CB1 directly
interacts with the NMDAR to reduce its activity. A relevant aspect
of this regulation is the fact that the endocannabinoid system is
being recruited for NMDAR activation and that its response must
be fast enough to achieve an efficacious restriction of NMDAR
calcium permeation. Otherwise, as the interval between the acti-
vation of NMDARs and CB1 response increases this control
is diminished (Zhuang et al., 2005). This is because NMDAR
function recruits the activity of PKA, via Ca2+-CaM/adenylyl
cyclase/cAMP, which displaces the negative influence of CB1 acti-
vation on NMDAR function (Sánchez-Blázquez et al., 2013b).
Thus, an endocannabinoid system that is permissive of the
glutamate activity could eventually cause excitotoxic stress-
induced neural dysfunctions. Excessive cannabinoid-mediated
restriction of NMDAR function may precipitate glutamate hypo-
function such as that observed in schizophrenia. In regard to
CB1–NMDAR association, cannabinoids that regulate NMDAR
function promote the internalization/recycling of the cannabi-
noid receptor to reduce the stability of the glutamate receptor
through the co-internalization of NR1 subunits (Garzón et al.,
2009; Sánchez-Blázquez et al., 2013b). This mechanism disas-
sembles the NMDAR and increases the presence of NR1 sub-
units in the cytosol, subsequently increasing the presence of
NR2 subunits as well (Fan et al., 2010; Sánchez-Blázquez et al.,
2013b).

Precise knowledge of the molecular mechanisms that enable
this physiological regulation will permit the identification of
the signaling elements that cause NMDAR dysregulation. In the
cell membrane, the physical association of CB1–NMDAR and
its functional relevance are dependent upon the HINT1 protein
(Sánchez-Blázquez et al., 2013b; Vicente-Sánchez et al., 2013). Fol-
lowing agonist challenge, CB1 is co-internalized with HINT1 and
NR1 subunits, and whereas the HINT1 protein conserves its asso-
ciation with the CB1, it dissociates from the NR1 subunits. When
the CB1–HINT1 complexes are recycled back to the cell surface,
they rapidly re-associate with new NR1 subunits for their co-
internalization. As the agonist-internalized CB1s return to the cell
surface within a few minutes (Hsieh et al., 1999), the presence of
exogenous cannabinoids in the receptor environment produces
rapid and repeated recycling of CB1s, which may cause instability
and the disruption of many NMDARs (Figure 2). Obviously, if
exogenous cannabinoids drive this regulation beyond physiologi-
cal limits, the number of NMDARs on the cell surface diminishes
as they are progressively driven to lysosomes and metabolized,
leading to glutamate hypofunction. However, it remains unclear
as to whether a safe switch disconnects NMDAR function from
the negative influence that the disproportionate activation of the
CB1 produces in such circumstances.

In this context, the HINT1 protein represents a promising tar-
get that can be used to modulate cannabinoid neuroprotection.

FIGURE 2 | Proposed mechanism of cannabinoid-induced NMDAR

hypofunction. CB1 and the NMDAR NR1 subunit associate in the
post-synapse via the homodimeric HINT1 protein. (1) The agonist binds to
CB1 and (2) promotes co-internalization of CB1–HINT1 and NR1 subunits.
These proteins separate in the cytosol and (3) CB1–HINT1 returns to the
plasma membrane. (4) The re-sensitized CB1 associates with new NR1
subunits and (5) the cycle is reinitiated while the agonist remains in the
receptor environment.

This protein has been found to be associated with the cytoso-
lic regions of a variety of GPCRs (Sánchez-Blázquez et al., 2012),
and molecular studies have indicated that this scaffold protein
determines the quality of the GPCR–NMDAR interaction. CB1s
and MORs associate via HINT1 proteins with NR1 subunits.
Whereas MOR agonists disrupt the HINT1–NR1 association and
trigger negative feedback via increases in NMDAR responsiveness,
cannabinoids maintain the HINT1–NMDAR association, which
is necessary to counteract excitotoxicity and preserve cell viabil-
ity. These differences could account for neuropathies in which
NMDAR hyperactivity diminishes the antinociceptive capacity
of strong analgesics such as opioids, but cannabinoids still dis-
play some of their analgesic effects (Ashton and Milligan, 2008).
Given the fact that several GPCRs engage functional cross-talk
with ion channels, these interactions may underlie both the
therapeutic and undesirable side-effects of currently available
drugs.

CONCLUSION AND PERSPECTIVE
The negative regulation of NMDARs by cannabinoids is par-
ticularly relevant because their persistent activation produces a
series of perturbations that may lead to neurodegenerative dis-
eases (Lipton, 2006), mood disorders, such as depression (Maeng
and Zarate, 2007), and neuropathic pain (Sigtermans et al., 2009).
The CB1–NMDAR association plays a significant role in the
efficacy of cannabinoids in combating NMDAR hyperactivity-
induced insults. In a demanding model, such as that of NMDA
application-induced neuronal excitotoxicity, the agonists that
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promote strong CB1s internalization, such as WIN55,212-2 and
ACEA (Garzón et al., 2009), provide more effective protection
against neural injury than anandamide or methanandamide
which barely internalize this receptor (Kim et al., 2006; Kreutz
et al., 2007). Such a pattern is consistent with cannabinoids
reducing the stability of the NMDAR, thereby dampening its
activity.

As mentioned previously, schizophrenia is related to alter-
ations that lead to NMDA hypofunction and dopaminergic
hyperfunction in cortical/subcortical areas. Most relevant, neu-
robiological studies indicate that cannabis and endocannabinoids
can dysregulate the neurotransmitter systems involved in the
pathophysiology of schizophrenia, such as the dopaminergic
and glutamatergic systems (Javitt, 2007). Indeed, cannabinoids
reduce hippocampal LTP, which is related to NMDAR function,
and have been implicated in learning and memory processes.
Additionally, cannabinoid abuse produces dopaminergic hyper-
function in limbic areas and the cortex, which may cause
the cannabinoid-induced cognitive deficits. This enhancement
of dopamine function appears to be caused by CB1-mediated
NMDAR hypofunction (Javitt, 2007). A relevant question is
whether the association between CB1 and the NMDAR may
provide clues as to the nature of susceptibilities implicated
when smoked cannabis abuse promotes psychosis and circum-
stantially precipitates symptoms of schizophrenia (Harrison and
Weinberger, 2005).

To produce effective control of NMDAR activity, the cannabi-
noid system must equilibrate its negative influence to the strength
of NMDAR signaling (Marsicano et al., 2002). If this does not
occur, the lack of harmonization may provoke NMDAR-mediated
cell damage or the excessive downregulation of glutamate signal-
ing, which may also negatively affect cell homeostasis. While the
duration of such effects is limited and the system can be recovered
and reset to normality, disproportionate CB1-mediated control of
NMDAR activity may reduce its recovery and produce persistent
NMDAR hypofunction. Therefore, a poor or excessive CB1-
mediated effect on NMDAR activation may cause a series of neural
dysfunctions in the long term. The extent of the endocannabinoid
response is dependent upon the NMDAR-induced recruitment of
CB1s and/or the mechanisms disconnecting both receptors to pre-
vent NMDAR hypofunction. Alterations in the NR1 subunits, CB1
and/or the HINT1 protein on serine/threonine kinases implicated
in CB1 recruitment to NR1 subunits may cause the vulnerability
required for exogenous cannabinoids to precipitate psychosis and
eventually schizophrenia.

Our current knowledge indicates that the HINT1 protein is
critical for this regulation. Indeed, in the absence of HINT1, the
NMDAR cannot establish functional or molecular interactions
with CB1, and cannabinoids fail to reduce NMDAR-mediated
calcium flux, NO production, and calcium and zinc release
from endogenous stores (Sánchez-Blázquez et al., 2013b). Thus,
the HINT1 protein enables CB1–NMDAR cross-regulation and
may also be decisive for the harmonization of their activities
(Figure 1). CB1 couples via HINT1 proteins to a regulator of
G protein signaling, the RGSZ2 protein (also named RGS17),
which binds to neural NOS (nNOS) and controls NO produc-
tion via CB1 activation (Marsicano et al., 2002; Garzón et al.,

2011; Rodríguez-Muñoz and Garzón, 2013). One possibility is
that NR1 subunits and RGSZ2–nNOS complexes compete for
HINT1 proteins. Thus, upon simultaneous activation of CB1s
and NMDARs, kinases, such as PKC or calmodulin-dependent
protein kinase II (CaMKII) disrupt the HINT1/RGSZ2–nNOS
association (Rodríguez-Muñoz et al., 2011), favoring HINT1
binding to NR1 subunits. In contrast, the release of NR1
subunits from the CB1 environment stimulates the association
of RGSZ2 proteins with this receptor. This phenomenon may
couple the formation of CB1–NMDAR complexes with the lev-
els of NMDAR activity and uncouple CB1 from the source
of NO (nNOS) and zinc ion production, the RGSZ2–nNOS
complex (Garzón et al., 2011; Sánchez-Blázquez et al., 2012),
thereby preventing cannabinoids from contributing NO/zinc to
the process of glutamatergic excitotoxicity. The plasticity of this
regulatory process may help adjust the CB1–NMDAR associ-
ation to the level of NMDAR activation, making the control
exerted by cannabinoids over NMDARs more efficient and impor-
tantly, protecting against unnecessary NMDAR hypofunction
(Figure 3).

The physical and functional association of CB1s with NMDARs
requires HINT1. Targeted deletion of the HINT1 gene uncouples
the NMDAR from CB1 inhibition and the activity of the gluta-
mate receptor thus increases (Sánchez-Blázquez et al., 2013a). In
the plasma membrane and in the context of CB1–NMDAR regu-
lation, the HINT1 protein may behave as a circuit breaker in this
CB1–NMDAR association, releasing NMDARs from the control
of CB1 and enhancing their binding to RGSZ2–nNOS complexes
(although only when the CB1–NMDAR association produces
excessive NMDAR hypofunction). It is possible that this secu-
rity mechanism is triggered in response to insufficient NMDAR
permeation of calcium or calcium–calmodulin levels. Therefore,
alterations in this mechanism which senses NMDAR function may
promote NMDAR hypofunction. Indeed, the HINT1 protein has
been related to psychosis (Vawter et al., 2002, 2004), and, the
HINT1 gene is located on chromosome 5q31.2, a region impli-
cated in linkage studies of schizophrenia. Thus, an anomalous
HINT1 protein or alterations of its endogenous regulators could
contribute to cannabinoid-induced NMDAR hypofunction. The
diminished expression of HINT1 mRNA found in post-mortem
brains of schizophrenia patients may reflect a compensatory mech-
anism leading to reduce the expression of such anomalous HINT1
proteins. Moreover, data from association and expression studies
suggest that variants of HINT1 may be associated with schizophre-
nia and that these associations may be sex-specific (Chen et al.,
2008).

In summary, the existence of HINT1-dependent CB1–NMDAR
associations provides a new interaction to consider when eval-
uating the capacity of cannabinoid abuse to produce NMDAR
hypofunction, such as that observed in psychosis and schizophre-
nia. As HINT1 has been described as a susceptibility gene
for schizophrenia, variants of the HINT1 protein found in
schizophrenic patients may help enhance the NMDAR hypofunc-
tion caused by exogenous cannabinoids that trigger the activation
of the endogenous regulatory system at the wrong time, with
excessive frequency and intensity. Anomalous increases in the
affinity of the CB1 C-terminus for the C1 segment of the NR1
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FIGURE 3 | Diagram describing the recruitment of CB1-mediated control

of NMDAR activation. Upper left panel : Under resting conditions the
CB1–HINT1 complex remains bound to the RGSZ2 protein. Upper right panel :
Upon activation of NMDARs, endogenous cannabinoids act on CB1s and
activate G proteins. Some GαGTP subunits bind to the RGS domain of RGSZ2
proteins and expose HINT1 to kinases, such as CB1-activated PKC
(Rodríguez-Muñoz et al., 2011). Middle right panel : This action forces the
release of RGSZ2 and promotes the binding of the NMDAR NR1 subunit to
the HINT1 protein (Sánchez-Blázquez et al., 2013b). Lower panel : The
association of NR1s with CB1s permits cannabinoids to reduce NMDAR
function, and the ratio between NMDAR activity and CB1 recruitment will be
dependent upon the extent of NMDAR-mediated calcium fluxes (most likely
by a calcium sensor), and the activity of kinases that favor the formation of
this complex. Middle left panel : When NMDAR activity ceases the silent
NMDARs will be protected by the return of RGSZ2 to the HINT1 protein (the

action of other kinases on the NR1 subunit likely reduces its binding to
HINT1, or alternatively, the action of phosphatases on HINT1 favors RGSZ2
binding). Note 1: In the absence of cannabinoid activity, there are probably
numerous CB1–NMDAR complexes in which the NMDAR is active, but its
function is limited (recall that in the absence of CB1s or HINT1 proteins,
NMDAR activity increases; Kim et al., 2006; Sánchez-Blázquez et al., 2013b).
The aforementioned mechanism may therefore affect the increase in NMDAR
activity, which will reach a given threshold (these putative calcium sensors
are essential for controlling this). The release of silent NMDARs from the
control of activated CB1s is essential to avoid unnecessary glutamate
hypofunction. Note 2: In the absence of CB1 activation, a large increase in
NMDAR activity, such as that provided by intracerebroventricular (icv)
injection of NMDA, forces the PKA-mediated separation of NMDARs from the
CB1 and the loss of any potential control (see the transit from the lower panel
to the upper left panel).

subunits or diminished HINT1–RGSZ2 interactions may cause
a disproportionate disruption of NMDARs upon CB1 internal-
ization, and the HINT1 protein emerges in this context as a
potential therapeutic target. Accordingly, dysregulation of the
molecular mechanisms responsible for CB1-mediated control of
NMDAR activity may constitute risk factors that could precipitate
symptoms of schizophrenia in early cannabis abusers that may
otherwise be induced by the endogenous system, albeit at a later
time.
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