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Developmental nicotine exposure 
engenders intergenerational downregulation 
and aberrant posttranslational modification 
of cardinal epigenetic factors in the frontal 
cortices, striata, and hippocampi of adolescent 
mice
Jordan M. Buck1,2* , Heidi C. O’Neill1 and Jerry A. Stitzel1,2

Abstract 

Background: Maternal smoking of traditional or electronic cigarettes during pregnancy, which constitutes devel-
opmental nicotine exposure (DNE), heightens the risk of neurodevelopmental disorders including ADHD, autism, 
and schizophrenia in children. Modeling the intergenerationally transmissible impacts of smoking during pregnancy, 
we previously demonstrated that both the first- and second-generation adolescent offspring of nicotine-exposed 
female mice exhibit enhanced nicotine preference, hyperactivity and risk-taking behaviors, aberrant rhythmicity of 
home cage activity, nicotinic acetylcholine receptor and dopamine transporter dysfunction, impaired furin-mediated 
proBDNF proteolysis, hypocorticosteronemia-related glucocorticoid receptor hypoactivity, and global DNA hypo-
methylation in the frontal cortices and striata. This ensemble of multigenerational DNE-induced behavioral, neurop-
harmacological, neurotrophic, neuroendocrine, and DNA methylomic anomalies recapitulates the pathosymptoma-
tology of neurodevelopmental disorders such as ADHD, autism, and schizophrenia. Further probing the epigenetic 
bases of DNE-induced multigenerational phenotypic aberrations, the present study examined the expression and 
phosphorylation of key epigenetic factors via an array of immunoblot experiments.

Results: Data indicate that DNE confers intergenerational deficits in corticostriatal DNA methyltransferase 3A 
(DNMT3A) expression accompanied by downregulation of methyl-CpG-binding protein 2 (MeCP2) and histone dea-
cetylase 2 (HDAC2) in the frontal cortices and hippocampi, while the expression of ten-eleven translocase methylcy-
tosine dioxygenase 2 (TET2) is unaltered. Moreover, DNE evokes multigenerational abnormalities in HDAC2  (Ser394) 
but not MeCP2  (Ser421) phosphorylation in the frontal cortices, striata, and hippocampi.

Conclusions: In light of the extensive gene regulatory roles of DNMT3A, MeCP2, and HDAC2, the findings of this 
study that DNE elicits downregulation and aberrant posttranslational modification of these factors in both first- and 
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Background
One in ten women in the United States disclose smok-
ing conventional cigarettes during pregnancy, and 14% 
report consuming electronic cigarette during pregnancy 
[1, 2]. Concerningly, epidemiological studies reveal that, 
irrespective of the lack of corroborative research, the 
majority of individuals queried mistakenly believe that 
electronic cigarettes constitute a safer and healthier sur-
rogate for conventional cigarettes, and this misperception 
is most frequent in women of reproductive age [3–7]. In 
actuality, the consumption of either conventional or elec-
tronic cigarettes during pregnancy constitutes develop-
mental nicotine (NIC) exposure (DNE), which is linked 
to myriad fetal consequences including pre-mature birth, 
low birth weight, and sudden infant death syndrome 
[8–12]. In conjunction with its deleterious consequences 
for the newborn fetus, DNE also disrupts neurodevelop-
ment and is associated with neurodevelopmental dis-
orders such as ADHD, autism, and schizophrenia [1, 
10–19]. Of particular concern, the neurodevelopmental 
consequences of DNE appear transmissible across mul-
tiple offspring generations, as demonstrated by a recent 
report indicating that grand-maternal smoking enhances 
the likelihood of autism diagnosis in grandchildren [17]. 
In support and expansion of previous epidemiological 
and animal model research, we recently reported that 
DNE precipitates multigenerational neurodevelopmen-
tal disorder-like hyperactivity, risk-taking behaviors and 
circadian disruptions as well as neurobiological perturba-
tions in the frontal cortex and striatum including nico-
tinic acetylcholine receptor (nAChR) and DA transporter 
(DAT) dysfunction, proBDNF–BDNF imbalance, furin 
downregulation, and glucocorticoid receptor hypoac-
tivity accompanied by hypocorticosteronemia [20–40]. 
Collectively, these findings provide clinical and preclini-
cal evidence of the multigenerational predisposition to 
neurodevelopmental disorders conferred by maternal 
smoking during pregnancy and implicate DNE-induced 
alterations in corticostriatal acetylcholine, dopamine, 
BDNF, and glucocorticoid signaling therein.

DNA methylation is a fundamental epigenetic regula-
tor of gene expression which modulates behavior, influ-
ences cholinergic, dopaminergic, neurotrophic, and 
glucocorticoid signaling, and is disrupted in neurode-
velopmental disorders, DNE children, and animal mod-
els thereof [40–66]. For instance, DNA methylation 
levels at birth are inversely related to symptom severity 

in pediatric ADHD patients, and the children of mater-
nal smokers exhibit global and locus-specific alterations 
in dorsolateral prefrontal cortical DNA methylation 
patterns that are directly linked to impaired neurode-
velopment, deficient neurodifferentiation, atypical neu-
romorphology, and aberrant synaptogenesis [51, 53–58, 
65, 66]. Similarly, DNA methylomic alterations are 
also linked to BDNF and HPA axis deficits in neurode-
velopmental disorders as well as in DNE children and 
animal models [32–34, 36–38, 67–70]. Building upon 
this research, we recently documented corticostriatal 
global DNA methylome deficits in first- and second-
generation adolescent DNE mice that co-occur with the 
multigenerational transmission of neurodevelopmen-
tal disorder-like behavioral perturbations, nAChR and 
DAT dysfunction, proBDNF/BDNF imbalance, furin 
deficits, and atypical glucocorticoid receptor activity 
[39, 40]. In light of this evidence, perturbed DNA meth-
ylation patterns represent a putative mechanistic basis 
for the predisposition to neurodevelopmental disorders 
in the children and grandchildren of maternal smokers.

Contemporary research indicates that DNE alters the 
transcription and expression of the epigenetic factors 
DNA methyltransferase 3A (DNMT3A) and ten-eleven 
translocase methylcytosine dioxygenase 2 (TET2) in 
rodent offspring [59, 71, 72]. Given that DNMT3A 
and TET2 reciprocally regulate DNA methylation via 
catalysis of de novo DNA methylation and demethyla-
tion, respectively, downregulation of DNMT3A and/or 
upregulation of TET2 could mediate the multigenera-
tional global DNA methylome deficits and associated 
neurobehavioral phenotypes that we have previously 
identified in adolescent DNE mice [39, 40, 73, 74]. In 
support of this inference, alterations in corticostri-
atal and hippocampal DNMT3A and TET2 expression 
perturb the DNA methylome and thereby disrupt neu-
rodevelopment, neuroplasticity, and synaptogenesis, 
elicit neurodegeneration, impair learning, memory, and 
cognition, and modify anxiety, stress responsivity, and 
emotional behaviors, and this cascade of DNMT3A and 
TET2 downregulation-induced DNA methylome per-
turbation occurs in neurodevelopmentally disordered 
and DNE children as well as animal models thereof [1, 
35, 37, 38, 59, 67, 75–98]. Taken together, these findings 
raise the possibility that DNE may disrupt neurode-
velopment in part by eliciting DNMT3A and/or TET2 
dysregulation.

second-generation DNE mice suggest that epigenetic perturbations may constitute a mechanistic hub for the inter-
generational transmission of DNE-induced neurodevelopmental disorder-like phenotypes.
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Beyond the presumptive roles of DNA-methylating 
and DNA-demethylating enzymes, the literature suggests 
that additional epigenetic factors may be involved in the 
intergenerational transmission of phenotypic aberrations 
elicited by developmental exposure to nicotine and other 
drugs of abuse [99, 100]. Therein, a recent study dem-
onstrates that developmental morphine exposure elicits 
transgenerational alterations in the expression of methyl-
CpG-binding protein-2 (MeCP2) and histone deacety-
lase 2 (HDAC2), the former of which (MeCP2) binds 
to methylated DNA and recruits the latter (HDAC2) to 
promote heterochromatization and epigenetic silenc-
ing of methylated loci [100–102]. Similar to DNMT3A 
and TET2 deregulation, aberrant corticostriatal and hip-
pocampal MeCP2 and HDAC2 expression disrupts neu-
rodevelopment, synaptogenesis, and synaptic plasticity, 
elicits BDNF and HPA axis dysfunction, impairs learning 
and memory, and alters stress responsivity, each of which 
phenomena are reported in neurodevelopmentally disor-
dered and DNE children as well as animal models thereof 
[1, 36–38, 67, 81, 85, 86, 88–98, 102–117].

In addition to the putative roles of perturbed MeCP2 
and HDAC2 expression in neurodevelopmental disor-
ders, aberrant posttranslational modifications of MeCP2 
and HDAC2 may alter the function of these epigenetic 
factors and thereby further contribute to neurodevel-
opmental disorders as well as the multigenerational 
impacts of DNE. Therein, MeCP2  (Ser421) phosphoryla-
tion facilitates neurodevelopment and neuronal function, 
experience-dependent chromatin remodeling, dendritic 
outgrowth and spine maturation, BDNF expression, and 
the neurocircuitry of behavior [118–120]. Moreover, 
HDAC2  (Ser394) phosphorylation disinhibits oxidative 
stress-induced neuroapoptosis and may thereby con-
tribute to the aberrant neuroinflammatory and neurode-
generative processes implicated in the pathophysiology 
of ADHD, autism, and schizophrenia [106, 121–124]. In 

aggregate, the aforementioned evidence suggests putative 
roles for both the expression and posttranslational modi-
fication of MeCP2 and HDAC2 in the intergenerational 
neurodevelopmental disorder-like phenotypes elicited by 
DNE.

Collectively, prior studies implicate an ensemble of 
DNA methylomic and histonomic alterations in the etiol-
ogy of ADHD, autism, and schizophrenia, in the height-
ened risk for neurodevelopmental disorders in DNE 
children and grandchildren, and in the ADHD-, autism-, 
and schizophrenia-like phenotypes exhibited by first-gen-
eration DNE offspring. While we have previously demon-
strated corticostriatal global DNA hypomethylation in 
DNE offspring and grandoffspring, no prior studies have 
examined the multigenerational impacts of DNE on epi-
genetic factors such as DNA-methylating, DNA-demeth-
ylating, methylated DNA-binding, or histone-modifying 
proteins [39]. Given that neurodevelopmental disorders 
and DNE are associated with dysfunction of DNMT3A, 
TET2, MeCP2, and HDAC2, we posited that dysregula-
tion of these proteins may contribute to the increased 
risk of neurodevelopmental disorders in DNE children 
and grandchildren as well as the neurodevelopmental dis-
order-like phenotypes exhibited by rodent DNE offspring 
and grandoffspring. Addressing this hypothesis, the cur-
rent study characterized the multigenerational impacts of 
DNE on DNMT3A and TET2 expression as well as the 
expression and phosphorylation of MeCP2 and HDAC2 
in the frontal cortices, striata, and hippocampi of first- 
and second-generation adolescent DNE mice.

Results
Previously described protocols for the breeding of mice 
and collection of tissues are diagrammed in Fig.  1 and 
detailed in “Methods” section [39, 40]. Briefly, F0 dams 
received either nicotine (200  µg/mL in 0.2% saccharin) 
or vehicle (0.2% saccharin) as the sole source of fluid 

Fig. 1 Procedural timeline for breeding and tissue collection. Beginning 30 days prior (PND 60) to crossing with drug-naïve sires (PND 90), 
C57BL/6J dams (zeroth generation, F0) underwent passive oral exposure to 0.2% saccharin (developmental vehicle exposure) or 0.2% saccharin 
containing 200 µg/mL nicotine (developmental nicotine exposure, DNE). Vehicle or nicotine treatment of F0 dams persisted through weaning 
of first-generation (F1) developmental vehicle-exposed (F1 Veh) or developmental nicotine-exposed (F1 NIC) offspring at PND 21. Thereafter, 
water was provided as the exclusive fluid source for all offspring. At PND 90, randomly selected female F1 NIC mice were crossed with drug-naïve 
sires to foster second-generation (F2) developmental nicotine-exposed (F2 NIC) offspring. To obtain tissue for subsequent immunoblot analyses, 
whole brains were extracted from PND 45 (adolescent) progeny belonging to each developmental exposure group (F1 Veh, F1 NIC, and F2 NIC), 
and bilateral frontal cortices, striata, and hippocampi were then collected by manual dissection. PND post-natal day, Veh 0.2% aqueous saccharin, 
NIC 200 µg/mL nicotine in 0.2% aqueous saccharin, F1 Veh first-generation developmental vehicle-exposed offspring, F1 NIC first-generation 
developmental nicotine-exposed offspring, F2 NIC second-generation developmental nicotine-exposed offspring
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beginning 30 days prior to mating with drug-naïve sires 
and continuing until the weaning of F1 pups. Analo-
gous to smoking during pregnancy and nursing, first-
generation DNE (F1 NIC) mice were thereby exposed 
to vehicle and nicotine from conception until weaning, 
while F1 Veh mice were exposed to vehicle alone on the 
same schedule. Second-generation DNE (F2 NIC) mice 
are the progeny of F1 NIC females bred with drug-naïve 
males. By this design, F2 NIC mice underwent exclusively 
indirect nicotine exposure via the maternal germline 
(oocytes). All experiments utilized tissue from both sexes 
obtained at PND 45, and sex was included as a biological 
variable for all data analyses. No main effect of sex was 
detected for any measure, and all datasets were therefore 
collapsed by sex.

DNE confers multigenerational DNMT3A deficits 
in the frontal cortices and striata
DNMT3A maintains and establishes DNA methyla-
tion marks, and previous research reveals co-occurring 
DNMT3A deficits and global DNA hypomethylation in 
neurodevelopmental disorder-related brain regions of 
first-generation DNE mice [59, 73]. Therefore, we sus-
pected that the global DNA methylome deficits which we 
previously reported in first- and second-generation DNE 
progeny may stem from the multigenerational transmis-
sion of DNE-induced DNMT3A deficits [39]. To test 
this hypothesis, we performed immunoblot analyses to 
compare DNMT3A abundance, expressed as percentage 
relative optical density versus the mean F1 Veh control 
value, in the frontal cortices, striata, and hippocampi of 

first- and second-generation adolescent DNE mice ver-
sus F1 Veh controls. Main effects of group (F2,69 = 13.1; 
p = 0.00001), region (F2,69 = 16.9; p = 0.000002), and 
a significant group × region interaction (F4,69 = 4.6; 
p = 0.003) were detected. Relative to F1 Veh mice, F1 
NIC and F2 NIC mice exhibit DNMT3A downregu-
lation in the (Fig.  2a) frontal cortices (p = 0.0009 and 
p = 0.001, respectively) and (Fig.  2b) striata (p = 0.008 
and p = 0.0005, respectively), but no DNE-induced alter-
ations in DNMT3A abundance were identified in the hip-
pocampi (Fig. 2c).

DNE does not impact TET2 content in the frontal cortices, 
striata, or hippocampi
The DNA demethylase TET2 is dysregulated in first-gen-
eration DNE rodents, and TET2 dysfunction is broadly 
linked to myriad epigenetic and phenotypic alterations 
which mirror those observed in neurodevelopmental 
disorders as well as first- and second-generation DNE 
offspring [39, 40, 72, 77–79]. Accordingly, we reasoned 
that DNE may elicit multigenerational overexpression 
of TET2 which could contribute to the multigenera-
tional global DNA hypomethylation which we previously 
reported in DNE mice [39]. Evaluating this prediction, 
we compared TET2 abundance in the frontal cortices 
(Fig.  3a), striata (Fig.  3b), and hippocampi (Fig.  3c) of 
adolescent DNE offspring and grandoffspring versus 
F1 Veh control mice. Contrary to our hypothesis, TET2 
abundance in DNE mice did not differ from F1 Veh mice 
for any brain region assayed.

Fig. 2 DNE elicits multigenerational DNMT3A deficits in the frontal cortices and striata. Representative Western blot images and densitometric 
measurements of DNMT3A abundance in frontal cortices (nF1Veh = 8, nF1NIC = 11, and nF2NIC = 10), striata (nF1Veh = 9, nF1NIC = 10, and nF2NIC = 9), and 
hippocampi (nF1Veh = 7, nF1NIC = 7, and nF2NIC = 7). a DNMT3A abundance in frontal cortices. F1 NIC and F2 NIC mice have reduced frontal cortical 
DNMT3A content. b DNMT3A abundance in striata. F1 NIC and F2 mice NIC have reduced striatal DNMT3A content. c DNMT3A abundance in 
hippocampi. Hippocampal DNMT3A content is unaltered in F1 NIC and F2 NIC mice. FCX frontal cortices, STR striata, HIPP hippocampi, DNMT3A DNA 
methyltransferase 3A, TBP TATA-binding protein. All data are mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001
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DNE elicits multigenerational MeCP2 deficits in the frontal 
cortices and hippocampi
MeCP2 dysregulation elicits a broad spectrum of epige-
netic, neurobehavioral, neurofunctional, neurotrophic, 
and neuroendocrine anomalies that are consistent 
with observations in neurodevelopmental disorders 
and DNE children [61, 107–109, 115, 116]. While the 
impacts of DNE on MeCP2 are heretofore unexplored, 
developmental morphine exposure is known to elicit 
transgenerational upregulation of MeCP2 accompanied 
by various behavioral perturbations [100]. In consid-
eration of these findings and our prior documentation 
of multigenerational global DNA methylome deficits 
in DNE mice, we posited that DNE may alter MeCP2 
expression in first- and second-generation adolescent 
progeny [39]. Addressing this hypothesis, we assessed 
MeCP2 abundance in the frontal cortices, striata, and 
hippocampi of first- and second-generation adoles-
cent DNE mice versus F1 Veh controls. Main effects 
of group (F2,36 = 16.2; p = 0.00001), region (F2,59 = 7.45; 
p = 0.045), and a significant group × region × measure 
interaction (F2,59 = 7.61; p = 0.030) were detected. Com-
pared to F1 Veh mice, F1 NIC and F2 NIC mice have 
reduced MeCP2 content in the (Fig.  4a) frontal corti-
ces (p = 0.003 and p = 0.0006, respectively) and (Fig. 4c) 
hippocampi (p = 0.004 and p = 0.005, respectively), but 
not in the striata (Fig. 4b).

DNE does not impact MeCP2  (Ser421) phosphorylation 
in the frontal cortices, striata, or hippocampi
Of further relevance to neurodevelopmental disorders 
and the multigenerational impacts of DNE, MeCP2 
 (Ser421) phosphorylation regulates neurodevelopment 
and neuronal function, experience-dependent chromatin 
remodeling, dendritic outgrowth and spine maturation, 
BDNF expression, and the neural circuitry of behavior 
[118–120]. Accordingly, we inferred that DNE may elicit 
multigenerational perturbations in MeCP2  (Ser421) phos-
phorylation. Examining this possibility, we quantified 
fractional MeCP2  (Ser421) phosphorylation in the fron-
tal cortices, striata, and hippocampi of DNE offspring 
and grandoffspring compared to F1 Veh control mice. 
Discordant with our hypothesis, no DNE-induced altera-
tions in MeCP2  (Ser421) phosphorylation were detected 
in the frontal cortices (Fig.  4d), striata (Fig.  4e), or hip-
pocampi (Fig. 4f ).

DNE precipitates multigenerational HDAC2 deficits 
in the frontal cortices and hippocampi
Analogous to MeCP2 dysfunction, deregulation of HDAC2 
precipitates an ensemble of neurobehavioral and neu-
rodevelopmental perturbations that recapitulate key 
pathophysiological domains of multiple neurodevelop-
mental disorders and have been documented in DNE 
children and animal models [102, 104, 114]. While no 

Fig. 3 DNE does not impact TET2 content in the frontal cortices, striata, or hippocampi. Representative Western blot images and densitometric 
measurements of TET2 abundance in frontal cortices (nF1Veh = 7, nF1NIC = 8, and nF2NIC = 10), striata (nF1Veh = 7, nF1NIC = 9, and nF2NIC = 9), and 
hippocampi (nF1Veh = 8, nF1NIC = 9, and nF2NIC = 8). a TET2 abundance in frontal cortices. Frontal cortical TET2 content is unaltered in F1 NIC and F2 
NIC mice. b TET2 abundance in striata. Striatal TET2 content is unaltered in F1 NIC and F2 NIC mice. c TET2 abundance in hippocampi. Hippocampal 
TET2 content is unaltered in F1 NIC and F2 NIC mice. FCX frontal cortices, STR striata, HIPP hippocampi, TET2 ten-eleven translocase methylcytosine 
dioxygenase 2, TET2 (1) TET2 isoform 1, TET2 (2) TET2 isoform 2, TET2 (3) TET2 isoform 3, TBP TATA-binding protein. All data are mean ± SEM
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studies have directly examined the impacts of DNE on 
HDAC2, developmental morphine exposure is known 
to elicit transgenerational downregulation of HDAC2 in 
conjunction with aberrant behavioral phenotypes [100]. 
Furthermore, HDAC2 participates in a DNA methyla-
tion–MeCP2–HDAC2 interactome. Taken together with 
these observations, our prior findings of DNE-induced 
multigenerational corticostriatal global DNA methyl-
ome deficits coupled with the elucidation of MeCP2 defi-
cits in the present study led us to postulate that DNE may 
evoke multigenerational alterations in HDAC2 abundance 
[39]. Assessing this prediction, we compared HDAC2 

abundance in the frontal cortices, striata, and hippocampi 
of first- and second-generation adolescent DNE mice ver-
sus F1 Veh controls. Main effects of group (F2,37 = 12.7; 
p = 0.00006), region (F2,64 = 12.47; p = 0.002), measure 
(F1,64 = 82.74; p < 0.0001), a significant group × region inter-
action (F4,64 = 4.93; p = 0.02), a significant group × meas-
ure interaction (F2,64 = 20.28; p = 0.001), a significant 
region × measure interaction (F2,64 = 40.23; p < 0.0001), 
and a significant group × region × measure interaction 
(F4,64 = 9.98; p = 0.002) were detected. Compared to F1 Veh 
mice, F1 NIC and F2 NIC mice display decreased HDAC2 
abundance in the (Fig.  5a) frontal cortices (p = 0.007 and 

Fig. 4 DNE elicits multigenerational MeCP2 deficits in the frontal cortices and hippocampi. Representative Western blot images and densitometric 
measurements of MeCP2 abundance and fractional MeCP2  (Ser421) phosphorylation in frontal cortices, striata, and hippocampi. a MeCP2 
abundance in frontal cortices (nF1Veh = 11, nF1NIC = 10, and nF2NIC = 11). F1 NIC and F2 NIC mice have reduced frontal cortical MeCP2 content. b 
MeCP2 abundance in striata (nF1Veh = 12, nF1NIC = 10, and nF2NIC = 10). Striatal MeCP2 content is unaltered in F1 NIC and F2 NIC mice. c MeCP2 
abundance in hippocampi (nF1Veh = 13, nF1NIC = 14, and nF2NIC = 13). F1 NIC and F2 mice NIC have reduced hippocampal MeCP2 content. d 
Fractional MeCP2  (Ser421) phosphorylation in frontal cortices (nF1Veh = 7, nF1NIC = 6, and nF2NIC = 7). Frontal cortical fractional MeCP2  (Ser421) 
phosphorylation is unaltered in F1 NIC and F2 NIC mice. e Fractional MeCP2  (Ser421) phosphorylation in striata (nF1Veh = 8, nF1NIC = 8, and nF2NIC = 8). 
Striatal fractional MeCP2  (Ser421) phosphorylation is unaltered in F1 NIC and F2 NIC mice. f Fractional MeCP2  (Ser421) phosphorylation in hippocampi 
(nF1Veh = 8, nF1NIC = 6, and nF2NIC = 9). Hippocampal fractional MeCP2  (Ser421) phosphorylation is unaltered in F1 NIC and F2 NIC mice. FCX frontal 
cortices, STR striata, HIPP hippocampi, MeCP2 methyl-CpG binding protein 2, total total MeCP2, phospho phospho-MeCP2  (Ser421), TBP TATA-binding 
protein. All data are mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001
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p = 0.005, respectively) and (Fig. 5c) hippocampi (p = 0.009 
and p = 0.0006, respectively), while no DNE-induced 
alterations in HDAC2 content were apparent in the striata 
(Fig. 5b).

DNE manifests multigenerational alterations in HDAC2 
 (Ser394) phosphorylation in the frontal cortices, striata, 
and hippocampi
Of additional pertinence to neurodevelopmental dis-
orders and the multigenerational impacts of DNE, 

phospho-HDAC2  (Ser394) derepresses oxidative neu-
roinflammation and neuroapoptosis and may thereby 
contribute to the pathophysiology of ADHD, autism, 
and schizophrenia [106, 121–124]. Therefore, we next 
assessed the hypothesis that DNE elicits multigenera-
tional perturbations in HDAC2  (Ser394) phosphoryla-
tion. To this end, immunoblots were conducted to assess 
fractional HDAC2  (Ser394) phosphorylation in the fron-
tal cortices, striata, and hippocampi of DNE offspring 
and grandoffspring compared to F1 Veh controls. In 

Fig. 5 DNE elicits multigenerational HDAC2 deficits in the frontal cortices and hippocampi and alters HDAC2  (Ser394) phosphorylation in the frontal 
cortices, striata, and hippocampi. Representative Western blot images and densitometric measurements of HDAC2 abundance and fractional 
HDAC2  (Ser394) phosphorylation in frontal cortices, striata, and hippocampi. a HDAC2 abundance in frontal cortices (nF1Veh = 14, nF1NIC = 11, and 
nF2NIC = 11). F1 NIC and F2 NIC mice have reduced frontal cortical HDAC2 content. b HDAC2 abundance in striata (nF1Veh = 13, nF1NIC = 12, and 
nF2NIC = 12). Striatal HDAC2 content is unaltered in F1 NIC and F2 NIC mice. c HDAC2 abundance in hippocampi (nF1Veh = 12, nF1NIC = 13, and 
nF2NIC = 13). F1 NIC and F2 NIC mice have reduced hippocampal HDAC2 content (d) Fractional HDAC2  (Ser394) phosphorylation in frontal cortices 
(nF1Veh = 6, nF1NIC = 5, and nF2NIC = 5). F1 NIC and F2 NIC mice have increased frontal cortical fractional HDAC2  (Ser394) phosphorylation. e Fractional 
HDAC2  (Ser394) phosphorylation in striata (nF1Veh = 5, nF1NIC = 6, and nF2NIC = 5). F1 NIC and F2 NIC mice have reduced striatal fractional HDAC2 
 (Ser394) phosphorylation. f Fractional HDAC2  (Ser394) phosphorylation in hippocampi (nF1Veh = 6, nF1NIC = 5, and nF2NIC = 5). F1 NIC and F2 NIC 
mice have increased hippocampal fractional HDAC2  (Ser394) phosphorylation. FCX frontal cortices, STR striata, HIPP hippocampi, HDAC2 histone 
deacetylase 2, total total HDAC2, Phospho phospho-HDAC2  (Ser394), TBP TATA-binding protein. All data are mean ± SEM. *p < 0.05; **p < 0.01; 
***p < 0.001; ****p < 0.0001
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contrast to F1 Veh mice, F1 NIC and F2 NIC mice have 
increased fractional HDAC2  (Ser394) phosphorylation 
in the (Fig. 5d) frontal cortices (p = 0.002 and p = 0.006, 
respectively) and (Fig.  5f ) hippocampi (p = 0.007 and 
p = 0.009, respectively) as well as reduced fractional 
HDAC2  (Ser394) phosphorylation in the (Fig.  5e) striata 
(p = 0.045 and p = 0.047, respectively).

Discussion
Toward an improved understanding of the epigenetic 
mechanisms underlying the association of DNE with 
neurodevelopmental disorders in children and grand-
children, the present study addresses a void in the 
literature concerning the hitherto unknown multigen-
erational impacts of DNE on DNMT3A, TET2, MeCP2, 
and HDAC2 expression as well as MeCP2  (Ser421) and 
HDAC2  (Ser394) phosphorylation in the adolescent fron-
tal cortices, striata, and hippocampi. Importantly, a note-
worthy limitation in the experimental design of this study 
is the omission of a second-generation developmental 
vehicle-exposed control group for direct comparison to 
second-generation DNE mice. However, prior independ-
ent research detected no intergenerational impacts of 
developmental saccharin (vehicle) exposure on various 
neurodevelopmental disorder-related phenotypes such as 
locomotor activity, risk-taking behaviors, and dopamine 
signaling, the latter of which findings are corroborated 
by preliminary data from our lab [125]. A synopsis of the 
findings of this study is portrayed in Fig. 6.

Neurodevelopmentally disordered as well as DNE chil-
dren and rodents exhibit analogous DNA methylome 
alterations which appear to contribute to the neurobehav-
ioral, neurotrophic, and neuroendocrine disruption char-
acteristic of neurodevelopmental disorders, the children 
of maternal smokers, and animal models thereof [32–39, 
46–59]. Moreover, previous research suggests that dys-
function of the DNA methyltransferase DNMT3A may 
underlie DNA methylome aberrations such as those 
which we previously reported in the frontal cortices and 
striata of first- and second-generation adolescent DNE 
mice [39, 59, 71]. Addressing this possibility, the current 
study is the first to demonstrate DNE-induced downreg-
ulation of DNMT3A in the frontal cortices and striata, 
but not the hippocampi, of first- and second-generation 
adolescent progeny. These findings suggest that DNE 
exerts regioselective impacts on DNMT3A expression 
that may stem from the differential distribution and/or 
subunit composition of nAChRs among the brain regions 
assessed herein, which could in turn confer increased 
nicotine sensitivity and/or responsivity of DNMT3A 
expression in the frontal cortices and striata relative to 
the hippocampi. The brain region-selective multigen-
erational effects of DNE on DNMT3A expression could 

thereby conduce a discrete subset of multigenerational 
DNE-induced phenotypes which are more attributable 
to corticostriatal versus hippocampal dysfunction, such 
as our previous findings of hyperactivity and risk-taking 
behaviors as well as corticostriatal but not hippocampal 
proBDNF/BDNF imbalance and global DNA hypometh-
ylation [39, 40]. However, future research is necessary to 
comprehensively map the brain regional selectivity of the 
multigenerational impacts of DNE on DNMT3A expres-
sion and to determine the specific behavioral and neuro-
biological consequences thereof.

From a translational perspective, the results of this 
study suggest that DNE-induced downregulation of cor-
ticostriatal DNMT3A expression identified herein may 
contribute to the DNA methylome perturbations docu-
mented in neurodevelopmentally disordered and DNE 
children, but future clinical investigations are necessary 
to examine this potentiality [46–57]. These findings also 
warrant further research to assess the implicit possibility 
that DNE-elicited DNMT3A downregulation and asso-
ciated epigenetic, neurotrophic, and HPA axis changes 
may be intergenerationally transmissible in humans as 
appears to be the case in mice.

Fig. 6 Compendium of results. Dual-gradient heatmaps depicting 
the percentage differences relative to F1 Veh control mice in each 
outcome measure (vertical axis) and brain region (horizontal axis) 
for F1 NIC (left) and F2 NIC (right) mice. A percentage difference 
of zero indicates no difference (depicted in gray) relative to F1 
Veh control mice, whereas percentage differences of − 60% 
and 160% indicate a 60% decrease (depicted in red) and a 160% 
increase (depicted in green), respectively, relative to F1 Veh control 
mice. F1 NIC first-generation developmental nicotine-exposed 
adolescent offspring, F2 NIC second-generation developmental 
nicotine-exposed adolescent offspring, FCX frontal cortices, STR 
striata, HIPP hippocampi, DNMT3A DNA methyltransferase 3A, 
TET2 ten-eleven translocase methylcytosine dioxygenase 2, MeCP2 
methyl-CpG-binding protein 2, pMeCP2 phospho-MeCP2  (Ser421), 
HDAC2 histone deacetylase 2, pHDAC2 phospho-HDAC2  (Ser394). 
*p < 0.05; **p < 0.01; ***p < 0.001
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Congruent with the putative role of DNMT3A down-
regulation in neurodevelopmental disorder-associated 
and DNE-evoked DNA methylome deficits, contempo-
rary rodent research demonstrates deregulation of TET2, 
an enzyme which catalyzes DNA demethylation, accom-
panied by global DNA hypomethylation in peripheral 
tissues of first-generation DNE offspring [72]. However, 
the present study indicates that DNE does not impact 
frontal cortical, striatal, or hippocampal TET2 expres-
sion in either first- or second-generation DNE progeny. 
Taken together with the aforementioned DNE-induced 
corticostriatal DNMT3A deficits elucidated herein, the 
lack of detectable alterations in TET2 abundance in DNE 
offspring and grandoffspring results suggests that cor-
ticostriatal DNMT3A deficits principally underlie the 
multigenerational DNE-induced corticostriatal DNA 
methylome deficits and co-occurring phenotypes which 
we previously documented [39].

Similar to the consequences of DNMT3A and TET2 
dysregulation as well DNA methylome anomalies, altered 
corticostriatal and hippocampal expression of the meth-
ylated DNA-binding protein MeCP2 confers neurode-
velopmental and synaptoplastic as well as neurotrophic 
and HPA axis aberrations which mirror observations in 
neurodevelopmentally disordered and DNE children [1, 
35–38, 67, 86, 88–98, 102–105, 107, 109]. While no prior 
studies have assessed the multigenerational impacts of 
DNE on MeCP2, the literature implicates MeCP2 dereg-
ulation in the intergenerationally transmissible pheno-
types elicited by developmental exposure to morphine 
and other drugs of abuse [99, 100]. In furtherance of 
this line of research, the present study is the first to elu-
cidate multigenerational downregulation of MeCP2 in 
the frontal cortices and hippocampi, but not the striata, 
of adolescent DNE mice. Interestingly, the downregula-
tion of MeCP2 identified in DNE offspring and grand-
offspring contrasts with the MeCP2 upregulation elicited 
by developmental morphine exposure, implying a degree 
of drug-selectivity in the direction of developmen-
tal drug exposure-induced changes in MeCP2 expres-
sion [100]. Moreover, while both DNMT3A and MeCP2 
were downregulated in the frontal cortices, DNMT3A 
alone was downregulated in the striata, whereas MeCP2 
alone was downregulated in the hippocampi of DNE off-
spring and grandoffspring. Taken together, these find-
ings suggest that the intergenerational impacts of DNE 
on specific regulators of the DNA methylome are brain 
region-dependent and, by extension, may selectively con-
tribute to a subset of DNE-evoked neurodevelopmental 
disorder-like phenotypes. Therein, the brain regional 
selectivity of the multigenerational impacts of DNE 
may arise from differential distribution and/or subu-
nit composition of nAChRs among the unique cellular 

ensembles comprising each brain region assessed, but 
further research is necessary to elucidate the molecular 
biological bases as well as the phenotypic consequences 
of the brain regional selectivity of the multigenerational 
impacts of DNE on various epigenetic factors. Ultimately, 
these novel findings implicate DNE-induced MeCP2 
downregulation in the ensemble of behavioral, neurop-
harmacological, neurotrophic, and HPA axis anomalies 
which we previously documented in first- and second-
generation DNE mice. By extension, these results impli-
cate MeCP2 deficits in the etiology of DNE-related 
neurodevelopmental disorders including ADHD, autism, 
and schizophrenia [39, 40].

Complementing the relevance of altered MeCP2 
expression to neurodevelopmental disorders and the 
multigenerational consequences of DNE, atypical MeCP2 
 (Ser421) phosphorylation hinders neurodevelopment, 
experience-dependent chromatin remodeling, dendritic 
outgrowth and spine maturation, and BDNF expression, 
resulting in anomalous behavioral phenotypes which 
are concordant with ADHD, autism, schizophrenia, 
and smoking during pregnancy [118–120]. Despite the 
shared association of neurodevelopmental disorders and 
DNE with the neurobehavioral consequences of altered 
phospho-MeCP2  (Ser421) content, MeCP2  (Ser421) phos-
phorylation was unaltered in all brain regions of DNE 
mice assayed. These data indicate that aberrant phospho-
rylation of MeCP2  (Ser421) is not a mechanism whereby 
DNE elicits neurodevelopmental disorder-like brain and 
behavioral alterations.

Analogous to the perturbations elicited by dysregula-
tion of DNMT3A, TET2, MeCP2, and the DNA methy-
lome, aberrant HDAC2 expression in the brain impairs 
neurodevelopment, neurotrophic signaling, and HPA 
axis function in a manner consistent with observations in 
ADHD, autism, schizophrenia, and the children of mater-
nal smokers [35–37, 67, 86, 88–98, 106, 110, 111, 126]. 
Similar to MeCP2, HDAC2 dysregulation is also impli-
cated in the intergenerational phenotypic transmission 
precipitated by developmental exposure to morphine 
and other drugs of abuse [99, 100]. Expanding this area 
of research to capture the multigenerational impacts of 
DNE, this study is the first to identify HDAC2 deficits in 
the frontal cortices and hippocampi, but not the striata, 
of adolescent DNE offspring and grandoffspring. Nota-
bly, the downregulation of HDAC2 in the frontal corti-
ces and hippocampi of DNE offspring and grandoffspring 
mirrors the brain regional selectivity of DNE-induced 
intergenerational MeCP2 downregulation as well as the 
opposite direction of change compared to the transgen-
erational HDAC2 upregulation previously reported in 
developmental morphine-exposed mice [100]. Possible 
explanations for the regioselectivity of intergenerational 
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DNE-evoked HDAC2 downregulation again include vari-
able nAChR expression patterns and/or subunit compo-
sitions across the brain regions assessed, which could 
differentially contribute to the neurodevelopmental dis-
order-like neurobehavioral anomalies exhibited by first- 
and second-generation DNE mice [39, 40]. Ultimately, 
these data are the first to implicate HDAC2 deficiency 
in the multigenerational transmission of DNE-evoked, 
behavioral, neuropharmacological, neurotrophic, and 
neuroendocrine perturbations which we have previously 
reported [39, 40].

Lastly, the current study is the first to demonstrate that 
phospho-HDAC2  (Ser394) content is elevated in the fron-
tal cortices and hippocampi but decreased in the striata 
of both first- and second-generation adolescent DNE 
progeny. These results recapitulate the pathophysiology 
of ADHD, autism, and schizophrenia. Considering that 
HDAC2  (Ser394) hyperphosphorylation disinhibits oxida-
tive stress-induced neuronal inflammation and apoptosis 
[106], these results imply that multigenerational DNE-
induced alterations in HDAC2  (Ser394) phosphorylation 
may disinhibit neuroinflammation and oxidative neuro-
degeneration and thereby impede neurodevelopment in 
the frontal cortices and hippocampi, but not the striata 
[121–124].

Conclusions
The results of the present study reveal that DNE pre-
cipitates intergenerational transmission of corticostriatal 
DNMT3A deficiency, downregulation of MeCP2 and 
HDAC2 in the frontal cortices and hippocampi, and aber-
rant corticostriatal and hippocampal HDAC2  (Ser394) 
phosphorylation, while TET2 expression and MeCP2 
 (Ser421) phosphorylation were unaltered. Cumulatively, 
these findings imply that DNE differentially impacts dis-
crete epigenetic factors in a brain region-selective fash-
ion. Moreover, the findings of this study suggest that 
DNE-induced, brain region-selective epigenetic altera-
tions may comprise nexuses for the behavioral, neu-
ropharmacological, neurotrophic, and neuroendocrine 
anomalies that we previously reported in DNE offspring 
and grandoffspring [39, 40]. From a translational frame 
of reference, the results of this study contribute to a bur-
geoning literature indicating that DNE confers an ensem-
ble of neurodevelopmental disorder-like phenotypes that 
are intergenerationally transmitted via a putative epige-
netic mechanism. However, as DNE-induced epigenetic 
perturbations exhibited both shared and distinct patterns 
across the brain regions assessed herein, future research 
is warranted to delineate the gene-, cell type-, and brain 
regional specificity of DNE-evoked multigenerational 
epigenetic alterations and the relevance to neurodevelop-
mental disorders thereof.

Methods
Animals
All experimental and housing conditions were reviewed 
and pre-authorized by the Institutional Animal Care and 
Utilization Committee at the University of Colorado Boul-
der and conform to the guidelines for animal care and use 
established by the NIH and the Guide for the Care and Use 
of Laboratory Animals (8th Ed.). All mice were maintained 
in the same animal facility on a standard 12 h light/dark 
cycle (lights on at 07:00) and were provided food (Envigo 
Teklad 2914 irradiated rodent diet, Harlan, Madison, WI) 
and water ad libitum. As diagrammed in Fig. 1 and previ-
ously described, beginning 30  days prior to mating with 
drug-naïve sires, C57BL/6J dams received 0.2% saccharin 
(ThermoFisher, Waltham, MA) (vehicle) or 0.2% saccharin 
and nicotine (MilliporeSigma, Burlington, MA) (200  µg/
mL freebase) (DNE) in place of drinking water [39, 40]. 
Vehicle and nicotine solutions were replaced twice weekly, 
and treatment of dams continued until weaning of off-
spring at PND 21, whereafter water was provided to all 
progeny as the sole fluid source. Randomly selected female 
F1 DNE offspring were subsequently mated with drug-
naïve sires to foster F2 DNE (maternal germline nicotine-
exposed) offspring. Female F1 DNE mice used to breed F2 
DNE progeny were naïve to direct (post-weaning) nicotine 
exposure; as such, DNE-elicited phenotypes are transmit-
ted from F1 to F2 generation DNE offspring exclusively 
via the F1 maternal germline. All experiments utilized 
tissue collected at PND 45 (adolescence) from both sexes 
of offspring, and sex was included as a biological vari-
able in statistical analyses. To minimize between-litter 
and between-breeder variability within each group, tissue 
obtained from a minimum of 6 total litters from a mini-
mum of 4 total breeder pairs was assayed for each group 
and experiment. There were no group differences in litter 
size or pup survival rates, and no covariation with litter or 
breeder was detected for any dataset.

Importantly, the 200  µg/mL oral nicotine dosage uti-
lized herein yields a nicotine pharmacokinetic profile in 
C57BL/6J mice which is comparable to that of regular 
smokers, confers behavioral and neurobiological anoma-
lies, hinders neurodevelopment, and is widely imple-
mented across the DNE literature, thereby augmenting 
the generalizability of the DNE paradigm employed 
herein [20, 30, 39, 40, 127–130]. It should also be noted 
that, upon co-housing with pre-treated female breed-
ers, drug-naïve males gained access to vehicle or nicotine 
drinking solutions. Therefore, the DNE paradigm uti-
lized herein may be more accurately classified as parental 
rather than exclusively maternal DNE for first-generation 
DNE offspring, whereas second-generation DNE mice 
were exposed to nicotine solely via the maternal ger-
mline (oocytes). Notably, first-generation developmental 



Page 11 of 15Buck et al. Epigenetics & Chromatin           (2020) 13:13  

vehicle-exposed mice were used as controls for compari-
son to both first- and second-generation DNE mice, as 
pilot data and previous research reveal no intergenera-
tional impacts of developmental saccharin exposure [125].

Tissue collection
Tissue collection was performed as previously described 
[39, 40]. Briefly, intact brains were obtained after cervi-
cal dislocation and decapitation at PND 45, and bilateral 
frontal cortices, striata, and hippocampi were manually 
dissected in an ice-chilled glass dish.

Tissue lysis and fractionation of nuclear‑enriched proteins
Immediately following collection, tissue dissectants were 
homogenized and nuclear-enriched proteins fraction-
ated using a NE-PER kit (ThermoFisher, Waltham, MA) 
according to manufacturer protocol.

Determination and standardization of lysate protein 
concentrations
Protein concentrations for all nuclear-enriched lysates 
were determined using a Pierce bicinchoninic acid (BCA) 
Assay Kit (ThermoFisher, Waltham, MA) according to 
manufacturer protocol. Upon determination of protein 
concentration, samples were diluted to 2  µg/µL, sepa-
rated into 15 µL (30 µg) aliquots, and stored at − 80  °C 
until subsequent immunoblot assays.

Immunoblotting procedures
Immunoblot experiments were conducted via a standard 
protocol as previously described [40, 131, 132]. Briefly, 
lysate aliquots containing 30 µg total protein were reduced/
denatured, loaded onto 4–20% polyacrylamide gradient 
tris–glycine gels (Bio-Rad, Hercules, CA), electrophoresed, 
and electroblot-transferred to 0.45 µm Immobilon-P PVDF 
membrane (MilliporeSigma, Burlington, MA). Following 
transfer, membranes were incubated at room temperature 
(RT) for 30 min in blocking solution containing 5% non-fat 
milk (Bio-Rad, Hercules, CA) (for total protein detection) 
or 5% bovine serum albumin (MilliporeSigma, Burlington, 
MA) (for phosphoprotein detection) with 3% normal don-
key serum (MilliporeSigma, Burlington, MA) in Tris-buff-
ered saline (pH 7.4) (ThermoFisher, Waltham, MA) with 
0.15% Tween-20 (Bio-Rad, Hercules, CA) (0.15% TBST) 
to deter non-specific antibody binding. Upon completion 
of blocking, membranes were incubated overnight at 4 °C 
with agitation in primary antibody solution containing the 
appropriate primary antibody (raised in rabbit) diluted to 
a concentration of 1:1000 in blocking solution. Primary 
antibodies utilized for this study were as follows: anti-TBP 
(ProteinTech Cat# 22006-1-AP), anti-DNMT3A (Pro-
teinTech Cat#10954-1-AP), anti-TET2 (ProteinTech Cat# 
21207-1-AP), anti-MeCP2 (ProteinTech Cat# 10861-1-AP), 

anti-phospho-Ser421 MeCP2 (PhosphoSolutions Cat# 
p1205-421), anti-HDAC2 (ProteinTech Cat# 12922-1-AP), 
and anti-phospho-Ser394 HDAC2 (PhosphoSolutions Cat# 
p11421-394). After primary antibody incubation, mem-
branes were washed 5 × 5  min in 0.15% TBST (with agi-
tation). Following washing, membranes were incubated 
for one hour at RT (with agitation) in secondary antibody 
solution containing horseradish peroxidase-conjugated 
donkey anti-rabbit IgG (Bio-Rad, Hercules, CA) diluted to 
a concentration of 1:3000 in blocking solution. Following 
secondary antibody incubation, membranes were washed 
5 × 5  min in 0.15% TBST with agitation, and were then 
incubated (without agitation) for 5 min in chemilumines-
cent substrate (Clarity Western ECL Substrate, Bio-Rad, 
Hercules, CA). The chemiluminescent signals emitted from 
all membranes were captured using a FluorChem Imager 
(ProteinSimple, San Jose, CA).

Immunoblot densitometry
Unprocessed 8-bit immunoblot images were uploaded to 
ImageJ 1.52a for densitometry [133]. Background was sub-
tracted from all images prior to measurement of mean grey 
values for target and loading control bands [40, 134]. Mean 
grey values obtained for target bands were divided by those 
for corresponding loading control bands to determine 
relative optical density of each target protein [40, 134]. To 
calculate fractional phosphorylation of MeCP2  (Ser421) 
and HDAC2  (Ser394), corresponding relative optical den-
sity values for the phospho-specific bands were divided by 
those for the pan-specific (total) bands. Notably, and con-
sistent with previous reports, the anti-TET2 antibody used 
for this study detected three discrete TET2 isoforms [135]. 
However, no isoform-specific differences in TET2 abun-
dance were detected, and thus the relative optical density 
values for each TET2 isoform (isoforms 1, 2, and 3) were 
summed to provide a measure of total TET2 relative optical 
density. To obtain biologically descriptive outcome meas-
ures, arbitrary relative optical density values for DNMT3A, 
total TET2, total MeCP2, and total HDAC2, as well as the 
fractional phosphorylation values for phospho-MeCP2 
 (Ser421) and phospho-HDAC2  (Ser394), were transformed 
to, respectively, percentages relative optical density and 
percentages fractional phosphorylation versus the mean 
control (F1 Veh) value for each sample [40, 134], in which 
form data were both analyzed and visualized.

Statistical analyses
For DNMT3A and TET2 immunoblots, percentages rela-
tive optical density versus the mean F1 Veh control value 
were analyzed by mixed ANOVA with the between-sub-
jects factor group (F1 Veh, F1 NIC, or F2 NIC) and the 
within-subjects factor region (frontal cortices, striata, or 
hippocampi). For total and phosphorylated MeCP2 and 
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HDAC2 datasets, percentages relative optical density and 
percentages fractional phosphorylation versus the mean 
control (F1 Veh) value were analyzed by mixed ANOVA 
with the between-subjects factor group (F1 Veh, F1 NIC, 
or F2 NIC) and the within-subjects factors region (fron-
tal cortices, striata, or hippocampi) and measure (total or 
phospho-MeCP2 for MeCP2 immunoblots; total or phos-
pho-HDAC2 for HDAC2 immunoblots).

Statistical analyses were performed using SPSS (IBM Ana-
lytics, Armonk, NY), and data were visualized via GraphPad 
Prism 7.04 (GraphPad Software, La Jolla, California, USA). 
Prior to statistical analyses, data were screened for outliers 
using the ROUT test (Q = 1%), and verified outliers were 
omitted from analyses as indicated. A maximum of one out-
lier was excluded per group for each dataset. All data were 
first analyzed by multivariate ANOVA to assess potential 
effects of sex, breeder, or litter. No main effects of or inter-
actions with these variables were detected for any outcome 
measure, and data were therefore collapsed accordingly.
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